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Course topics

Static games
Zero-sum games
Potential games
Dynamic games, dynamic programming principle
Dynamic games, dynamic programming for games

@A Dynamic games, linear quadratic games, Markov games
Convex games, Nash equilibria characterization

B Convex games, Nash equilibria computation

B Auctions

Bayesian games

Learning in games

=

Extensive form games

—

Feedback games in extensive form

—

Final project presentations

=
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N-player non-zero-sum games

= N players
m Player i can choose one among m; pure actions.

rf = {’Y,-(1)7'Y,-(2)7 LR} i(mi)}
mletl =Ty x--- x I'y. The cost (utility/payoff if maximizers) for Player i is
givenby J; : T — R:

Ji(’Y17’727 e 7’-YN) = Ji(’yivfyfl')z Y—i = (717' s Yi—1y Vit - - - 77N)

Pure Nash equilibrium

A strategy profile v* = (77,75, .-.,7n) € I is a pure Nash equilibrium if for every
player
SO L) S di(vi,z), v el

= Multiple Nash equilibria are possible (non interchangeable)
= Randomized play — mixed strategies, mixed Nash equilibria
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Best-response

m Let vy_; be the pure strategy profile of all players other than i

mletl_;=Tyx---xTi_y x4 x Iy be the pure strategy spaces of players
other than i.

= How should player i choose her strategy?
Best-response map
The best-response of player i is the set R;(v—;) C I; such that
% € Ri(v=i) <= Ji(w,7=i) <Ji(vi,7=i) Vel
In other words: Ri(y—i) := argmin,, cr, Ji(yiy y=i)-
Recall what we had shown before regarding R; : I_; — 2"

® R;(v—;) is a set, not necessarily a singleton (one element only)
® Ri(y—:) is never empty (why?)
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Review: best-response and Nash equilibrium

Proposition
A strategy profile v* = (77,75, ...,n) € I is a pure Nash equilibrium if and only if
~7 € Ri(vy*;) for every player j.

Recall the fixed-point characterization of a Nash equilibrium:
= Consider a set valued map R such that when v € T,
R(7v) := [R1(v=1), R2(v=2), ..., An(v—n)] C T.
= Prove the above (we did it in Lecture 1).
m Remark: we used this characterization of Nash equilibria in proof of existence
of mixed strategy Nash equilibria.
= But what can we do to find a Nash equilibrium?
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Best-response dynamics

Iterative best-response update

Consider an initial pure strategy profile v(0) = (v1(0),72(0), . . ., v1(0)).
Stepk =0,...:

If v(k) is a pure Nash equilibrium — stop

Else there exists a player i, and 4; # ~i(k) such that % € R(v—i(k)).
Update: v(k + 1) := (51, 7=i(k)).
k =k + 1, goto step 1.

= Verify that the best-response dynamic terminates if and only if 7 is a pure
strategy Nash equilibrium.

= Under which conditions on the game the above dynamics converges?
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Examples of best-response dynamics behavior

In which of these games best-response dynamics converge? players are

maximizers L
A B Atfl“ N qar

hem ~ CONVTREN {(3,2) (1,1)} condiben A Convee
k oan NE, 2100 @3] ke o Pty

Clearly, it does not converge if a pure Nash equilibrium does not exist.

heads tail

deesn’} heads [ (1,=1) (=1,1)
il { (—1,1) (1,-1) }
(‘cnrxl

Does it converge to a pure Nash equilibrium if it exists?

Convevr Q L M R
2,2)  (-2,-2) (-2,-2)
W ,ML“QmJ P [(2,2) (1,-1)  (=1,1) ]
e | (-2,-2) (=1,1)  (1,-1)
Cvnkxh&b

)
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In this lecture

Potential games: A class of N-player general-sum games for which

m a pure Nash equilibrium is guaranteed to exist

m best-response dynamics converges
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Potential functions and potential games

Ordinal

A function P: Ty x I'; X ... x [y — R is an ordinal potential function if for every
player i and every ~_;,
i > .>

J/'('YI/:’Y*/) Ji( ’Y/ )Y 40 iff  P( r/,’V i) — (rf//,'V—/) 1{\0
for every +/,~/" € T;.
Observe: when player i chooses a best-response, the potential increases

Exact potential function

A function P: Ty x ', X ... x 'y — R is an exact potential function if for every
player i and every ~_;,

Ji(i s y=i) = (v’ =) = P(yi, v=1) = P(i” s v=i)
for every +/,~/" € T;.
A game is an (ordinal/exact) potential game if it admits an (ordinal/exact)

potential function.

[Monderer and Shapley (1996). Potential Games. Games and Economic Behavior. 14: 124-143.]
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Example 1 - verifying if a function is exact potential for a game

A B

68 @

m Verify this function is an exact potential for the above game
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Exercise 1 - verifying if a function is an ordinal potential for a game

L R

L1886

= Verify this function is an ordinal potential for the above game

[t 3

From Voorneveld and Norde paper, Figure 2

11/34



Exercise 2 - verifying if a game is ordinal potential

Show that the following game is not an ordinal potential game.

L R

C1E e

Hint: show there cannot be any function that satisfies the inequalities in the
definition of an ordinal potential function.

(you can check your work by seeing Monderer and Shapley paper, just after
Theorem 2.4)
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Deriving a potential function

= Write a set of equations for deriving an exact potential function for stag hunt

= L

P" = Stag Heﬁ P P
P = 2, T stag [(10,10) (0,4)} , P :L}“ ‘2}
Pay= X3 g fee | (4,0) (4,4) W P
Paq =4

Potential function equations

J (Tr0- G = R=Py < €Y 5 .}
J,(T0 "B =Pu=Pa = &

5: (TrK\“&(B/R) -\PI’L”PTZ :-‘1 A’ Lo

1 -\ 0 9
T2 C BILY - TulBR) * Poum Py =71 o\ 0 -t
O\ -

» Verify the best-response dynamics converges to a Nash equilibrium (to which?)
= Try the same exercise for the game matching pennies. A [6

-(¢ 6 4
P i 6 4 -2‘ 13/34
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Existence of pure Nash equilibrium

Proposition
(1) If a game admits a potential function, then it has a pure strategy Nash
equilibrium. (2) Furthermore, the best response dynamics converge.

= Provides a computation method and an intuition for repeated games
m These iterations converge to a Nash equilibrium that depends on the initial

conditions
= |t does not converge only to admissible Nash equilibria (see coordination

game)
Proof: see board.
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Another characterization of potential games

m A pathin I is a sequence

P= (7(0)77(1)7 .- '77(M))7 ’7(k) er

such that for every k, there exists a unique player i, such that

vk —1) = (Vi 7—i) = (k) = (s v—i),  With oy #
m Consider any finite path P = (y(0),~v(1),...,v(M)).
m A pathis closed if v(0) = v(M).

m A path is simple if v(k) # ~(k’), for every k, k’ (except v(0) and ~(M)).

15/34



Checking whether a game is potential

Define
I(P) : Z[J:k (v(K)) = Ji (v(k = 1))]

where i is the player that changes its strategy at step k.

Theorem 2.8 from [Monderer & Shapley]

Consider a finite game. Then the following statements are equivalent:
The game admits an exact potential function.
I(P) = 0 for every finite closed path P.
B /(P) = 0 for every finite simple closed path P.

B /(P) = 0 for every finite simple closed path P of length 4. | ¢~
“The following are equivalent” means 1 «<— 2 <— 3 «<— 4. ]\
3

S a7

Jonderer and Shapley: show 2 — 3 = 4, show 1 <= 2 and show

hevd
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Exercise 3 - Verifying a game is potential

Consider prisoner’s dilemma. Verify it is a potential game using the

characterization on the previous slide. Y ¢ <1\ =
Y () Ko \/ (o)
D (0,10

silent {(100 (1,1 ] \L\(c\}
?___
[ ot X C o) (coneacc C:Ea’)*)

TP = g v -, (v

A G TENE T NG TAINE,

d Y3y = J ven)T
To C vca4 y =3 (Y3 o



Exercise 4 - convergence of better-response (better-reply) dynamics

A path is an improvement path if

(k) = (i 7=i) With 2 7 %y = Ji(v(K)) < Ji (v(k = 1))

where ik is the player that changes its strategy at step k.

Proposition

Consider a finite action game. Every improvement path of is finite. If the game is
potential, the improvement path terminates at a Nash equilibrium.

See, for example, [Hespanha, Proposition 13.1].
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An important class of potential games: congestion games

m Consider a game with aset N/ = {1,2,..., N} of players, and
M ={1,...,M} resources (road segments, communication routes, ...)

m Each strategy corresponds to a subset of resources that the player will use:
for example A = {4}, 4P ={2,4,6}, ...
= Denote the load on resource r as the number of players who use it
t(y) :=HieN|rev}

m The cost for each player depends on the load on the resources she is using

Ji(y) =D _f (7))

re;

The function f; is resource-specific and non-decreasing
Each player who chooses a given resource experience the same cost
corresponding to the resource as other players choosing the same resource

What are the domain and range of ¢, and f,?

Examples: transportation or communication networks ...
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Example: Traffic routing

Ferry 40 There are two ways to reach city B from

"""""
. S

‘ .- city A, and both include some driving,
e O e and a trip on the ferry.

Road Road

15 + 0.1 51004 The two paths are perfectly equivalent,
the only difference is whether you first

Pras
P
-

-
-

40 drive, or take the ferry.

The time needed for the trip depends on what other travellers do.
m The ferry time is constant, 40 minutes
= The road time depends on the number of cars on the road.
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Traffic routing as a congestion game

40 . .
____FE'EY___ Formulation as a congestion game.
R O e Each traveller is a Player.
Road O Road
15+ 0.10s;00g Each path is a resource.
T f-(¢-) described the time spent on r

= Each Player can decide to take the North or the South path.

~_ J{Nroad,Nferry} North
7=\ {Sroad,S ferry}  South

= All players have identical cost function

40 + 15+ 0.14N road if’)/,' =N

Jil~vi ~_i) =
i(i, =) {40+15+0,1£Sr0ad ifv =38
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Every congestion game is an exact potential game

Theorem
The following is an exact potential function for congestion games.

£

M
P =Y fk

r=1 1

‘
2

>
Il

Proof
Consider a player i, and two joint pure strategies v = (i, v—;) and " = (v/, v—i)-
It suffices to show that
P(Y') = P(y) = di(v") = i)
Note that
® /p(y') = £p(v) — 1 for every resource p € v\
B lg(y') = £q(v) + 1 for every resource g € ~/\; ,
® (,(7') = £(~) for every other resource r. ; vy €V, &YeY;
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e :(Y‘/Y~1>

Proof (cont) Re eall Y 7 = (Y Y )

M (v M Lr(y
P - PO =3 3 H -3 3 k)
r=1 k=1 r=1 k=1
= Y () - Y hi()
qev/\v; pPEY\v/

which corresponds exactly to the difference between J;(v') and J;(v), namely,

Y) = di() =D _H()) = D)

lev/ €7
Z fa(la()) — Z fo(Lq (7))
9EV \i PEYNY/

Consequently, congestion games admit a pure Nash equilibrium.
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Und nction of the congestion g
K: ask students to derive the social welfare function. then they see they are n
aligned. for the left-hand be: 2c(1) + 3¢(3); for the right-hand-side will be 6¢(2)s

—

e(l)+¢(2)
(1) ‘

[ I\
fcme
bacK

(1 2 e(1) +¢(2) 1 2
Y W
fa A
’ Mo me -:“
¢ =c(1) +c(1) + e(1) 4 ¢(2) + ¢(3) &= c(1) + (1) + (1) + o(2) + ¢(2) + ¢{2)

FIGURE 4.10. In this example, the cost is the same on all three roads, and is
c(n) if the number of drivers is n. The figure shows the potential ¢ before and
after the player going from c to b switches from the direct path to the indirect
path through a. The change in potential is the change in cost experienced by
this player.

¢’ - @ =2elxn)-ccs),
Figure: From [Karlin and Peres, Game Theory, Alive]
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Traffic routing: properties of the pure strategy Nash equilibrium

"""""
. S

15 + 0.10nroad
Road

What are the pure Nash equilibria?

.-
-
-
.-
.
-

-
-

We consider a population of N = 200 travelers.

m Suppose the first 100 players choose the North path and the second 100
players choose the South path.

= Travel cost of each player:

Ji(yi,v7-i) =40+15+0.1 - 2(2)—0 = 65 minutes

= Can any player improve the outcome by unilaterally deviating from the ¥E?

NO,- ‘xr‘cfy(;z , V"chc, C’Og‘l L\//H& ;olﬁh;(\l;:ﬂf)

(Of X -1 25/34



Braess paradox through an example

--------- - Assume a bridge is build, to help reduce
traffic.

15 + 0.105r00

Roag It takes no time to cross the bridge,

15+ 0-Lfsread allowing to go from city A to city B

.-
="
-

----- ey without taking the ferry.

all travelers avoid the ferry.

Ji(v*) =2(15+ 0.1 - 200) = 70 minutes

Can you improve your outcome by unilaterally deviate from the above?
No, road + ferry now takes 40 + 15 + 0.1 - 200 = 75 minutes!
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Braess paradox - where is the paradox?

15 + 0.1r0n
Road Road

15 + 0.10nr0n
Road Road

15 + 0.14sr0ad 15 4+ 0.10s0ad

JNE = 65 minutes JNE = 70 minutes

With the new link in the transportation graph
m the original choice (road + ferry) is still present
m the new link is intensively used
m all agents experience higher cost!
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Ehe New Hork Times

WHAT IF THEY CLOSED 42D STREET AND NoBoDY NOTICED?
25 DECEMBER 1990

“On Earth Day this year, New York City’s Transportation Commissioner decided to
close 42d Street, which as every New Yorker knows is always congested. [...] But
to everyone’s surprise, Earth Day generated no historic traffic jam. Traffic flow

actually improved when 42d Street was closed.”

And many other real-life cases in road traffic, data networks, etc.
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TECHNOLOGY

The Perfect Selfishness of Mapping Apps | i

Apps like Waze, Google Maps, and Apple Maps may make traffic conditions
worse in some areas, new research suggests.

https:

https:
https:

https:

[ o S

We are not just facing data security and privacy issues caused by themass
digitalization of our ordinary lives, we are also facing physical danger and lifestyle
degradation in areas we would never had imagined that technology would affect
negatively. Photo: HT/File

Of Map Apps and Traffic Jams

//nymag. con/intelligencer/2017/12/waze~and-googlé-maps-create=traffic-in-cities.html
//www.usnews . com/news/national-news/articles/2018=05-07/why- some- cities-have-had-enough-of-waze
//www.livemint.com/Opinion/dcZr24gKTno410a6xhORIN/Of - Map=Apps-and-Traffic- Jams. html

//www.theatlantic.com/technology/archive/2018/03/mapping=apps-and-the-price- of=anarchy/555551/
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Distributed welfare games

The above observations motivate considering how to optimize total travel time...

Welfare function

In a N-person game, let ~; € I; be the strategy played by agent i.

Lety el :=T1 x I x...x 'y be the system-wide strategy.

A welfare cost W/ : ' — R is a measure of efficiency of each strategy for the
social cost of the population of agents.

If the individual cost that player i wants to minimize is J;(), the welfare function
can be for example,

W) =3 d() W) =maxd(r) W) =3 logd(7)
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Price of Anarchy

The Price of Anarchy is defined as the ratio

maXyerye W(~)

PoA = g
miner W)

where T is the set of all possible strategies for all agents,
while INye is the set of all strategies which are NE. g\)VV\
Wcz\le

In Braess paradox example, assume W (y) = V. Ji(7). e S
wm

(4375 PoA = ﬁ e 1008 Ko
— (®4.xxxx

Exercise: How would you formulate the problem of optimizing the social welfare
function?

7S Pea')(e dedee. Ferry South roo\al
Vs v v Fe vy 4+ North /oa.:,? J

So lr lQ'xQ\%( +“0/H\+ Sow



Historical notes

= Robert W. Rosenthal: defined congestion games
in 1973 as a class of games that have a pure
strategy equilibrium.

= Monderer and Shapley: defined potential games
and showed congestion games are equivalent
up to an isomorphism to potential games (1996).
See their paper for the definition of game
isomorphism.

m Shapley won the Nobel prize in economics for
his contributions to game theory

> potential games, matching algorithms, Markov
games, cooperative games

Lloyd Shapley

m Shapley and Nash were students of the same
doctoral thesis (A. W. Tucker)

Bounding the price of anarchy and mechanism design are active topics in
engineering and computer science, see for example here and here, respectively.
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Summary

Best-response dynamics and its convergence properties
Potential games: ordinal and exact potential functions
Maximizers of potential function and pure Nash equilibrium

Tools to determine if a game is potential

Paths, Improvement paths in playing the game
Convergence of better-reply dynamics in finite action games
Congestion games as an important class of potential games
m Social welfare optimization

m Braess Paradox
= Price of Anarchy
m Game design for reducing price of anarchy
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