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N-player non-zero-sum games

N players
Player i can choose one among mi pure actions.

�i = {�(1)
i

, �(2)
i

, . . . , �(mi )
i

}

Let � = �1 ⇥ · · ·⇥ �N . The cost (utility/payo� if maximizers) for Player i is
given by Ji : � ! R:

Ji(�1, �2, . . . , �N) = Ji(�i , ��i), ��i = (�1, . . . , �i�1, �i+1, . . . , �N)

Pure Nash equilibrium
A strategy profile �⇤ = (�⇤

1 , �
⇤
2 , . . . , �

⇤
N) 2 � is a pure Nash equilibrium if for every

player i

Ji(�
⇤
i , �

⇤
�i)  Ji(�

0
i , �

⇤
�i), �0

i 2 �i

Multiple Nash equilibria are possible (non interchangeable)
Randomized play ! mixed strategies, mixed Nash equilibria

3 / 34



Best-response

Let ��i be the pure strategy profile of all players other than i

Let ��i = �1 ⇥ · · ·⇥ �i�1 ⇥ �i+1 ⇥ �N be the pure strategy spaces of players
other than i.
How should player i choose her strategy?

Best-response map
The best-response of player i is the set Ri(��i) ✓ �i such that

�i 2 Ri(��i) () Ji(�i , ��i)  Ji(�
0
i , ��i) 8�0

i 2 �i .

In other words: Ri(��i) := argmin�i2�i
Ji(�i , ��i).

Recall what we had shown before regarding Ri : ��i ! 2�i :
Ri(��i) is a set, not necessarily a singleton (one element only)
Ri(��i) is never empty (why?)
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Review: best-response and Nash equilibrium

Proposition
A strategy profile �⇤ = (�⇤

1 , �
⇤
2 , . . . , �

⇤
N) 2 � is a pure Nash equilibrium if and only if

�⇤
i 2 Ri(�

⇤
�i) for every player i.

Recall the fixed-point characterization of a Nash equilibrium:
Consider a set valued map R such that when � 2 �,
R(�) := [R1(��1),R2(��2), . . . ,RN(��N)] ⇢ �.
Prove the above (we did it in Lecture 1).
Remark: we used this characterization of Nash equilibria in proof of existence
of mixed strategy Nash equilibria.
But what can we do to find a Nash equilibrium?
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Best-response dynamics

Iterative best-response update
Consider an initial pure strategy profile �(0) = (�1(0), �2(0), . . . , �n(0)).
Step k = 0, . . . :

1 If �(k) is a pure Nash equilibrium ! stop
2 Else there exists a player i, and �̃i 6= �i(k) such that �̃i 2 R(��i(k)).
3 Update: �(k + 1) := (�̃i , ��i(k)).
4 k = k + 1, goto step 1.

Verify that the best-response dynamic terminates if and only if �̄ is a pure
strategy Nash equilibrium.
Under which conditions on the game the above dynamics converges?
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Examples of best-response dynamics behavior

In which of these games best-response dynamics converge? players are
maximizers

 A B

A (3, 2) (1, 1)
B (0, 0) (2, 3)

�

Clearly, it does not converge if a pure Nash equilibrium does not exist.

 heads tail

heads (1,�1) (�1, 1)
tail (�1, 1) (1,�1)

�

Does it converge to a pure Nash equilibrium if it exists?

A =

2

4

L M R

U (2, 2) (�2,�2) (�2,�2)
M (�2,�2) (1,�1) (�1, 1)
B (�2,�2) (�1, 1) (1,�1)

3

5
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In this lecture

Potential games: A class of N-player general-sum games for which

a pure Nash equilibrium is guaranteed to exist

best-response dynamics converges
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Potential functions and potential games

Ordinal
A function P : �1 ⇥ �2 ⇥ . . .⇥ �N ! R is an ordinal potential function if for every
player i and every ��i ,

Ji(�
0
i , ��i)� Ji(�

00
i , ��i) � 0 i� P(�0

i , ��i)� P(�00
i , ��i) � 0

for every �0
i , �

00
i 2 �i .

Observe: when player i chooses a best-response, the potential increases

Exact potential function
A function P : �1 ⇥ �2 ⇥ . . .⇥ �N ! R is an exact potential function if for every
player i and every ��i ,

Ji(�
0
i , ��i)� Ji(�

00
i , ��i) = P(�0

i , ��i)� P(�00
i , ��i)

for every �0
i , �

00
i 2 �i .

A game is an (ordinal/exact) potential game if it admits an (ordinal/exact)
potential function.
[Monderer and Shapley (1996). Potential Games. Games and Economic Behavior. 14: 124–143.]
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Example 1 - verifying if a function is exact potential for a game

 A B

A (3, 2) (1, 1)
B (0, 0) (2, 3)

�

Verify this function is an exact potential for the above game

P =


1 0
�2 1

�
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Exercise 1 - verifying if a function is an ordinal potential for a game

 L R

T (0, 2) (0, 3)
B (1, 0) (0, 1)

�

Verify this function is an ordinal potential for the above game

P =


0 2
1 2

�

From Voorneveld and Norde paper, Figure 2
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Exercise 2 - verifying if a game is ordinal potential

Show that the following game is not an ordinal potential game.

 L R

T (1, 0) (2, 0)
B (2, 0) (0, 1)

�

Hint: show there cannot be any function that satisfies the inequalities in the
definition of an ordinal potential function.

(you can check your work by seeing Monderer and Shapley paper, just after
Theorem 2.4)
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Deriving a potential function

Write a set of equations for deriving an exact potential function for stag hunt

 Stag Hare

Stag (10, 10) (0, 4)
Hare (4, 0) (4, 4)

�

Potential function equations

I Verify the best-response dynamics converges to a Nash equilibrium (to which?)
Try the same exercise for the game matching pennies.
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Does it have a soluter at all ?

AX = b has a solute CD beRange (A)
x IS

I

·

()
a solute (verify)

furthermore , + c[i] , also a

solu hen

=D p -[ ; ) + [i]



Existence of pure Nash equilibrium

Proposition
(1) If a game admits a potential function, then it has a pure strategy Nash
equilibrium. (2) Furthermore, the best response dynamics converge.

Provides a computation method and an intuition for repeated games
These iterations converge to a Nash equilibrium that depends on the initial
conditions
It does not converge only to admissible Nash equilibria (see coordination
game)

Proof: see board.
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Another characterization of potential games

A path in � is a sequence

P = (�(0), �(1), . . . , �(M)), �(k) 2 �

such that for every k, there exists a unique player ik such that

�(k � 1) = (�ik
, ��ik

) ! �(k) = (�0
ik
, ��ik

), with �ik
6= �0

ik

Consider any finite path P = (�(0), �(1), . . . , �(M)).

A path is closed if �(0) = �(M).

A path is simple if �(k) 6= �(k0), for every k, k0 (except �(0) and �(M)).
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Checking whether a game is potential
Define

I(P) :=
MX

k=1
[Jik

(�(k))� Jik
(�(k � 1))]

where ik is the player that changes its strategy at step k.

Theorem 2.8 from [Monderer & Shapley]
Consider a finite game. Then the following statements are equivalent:

1 The game admits an exact potential function.
2 I(P) = 0 for every finite closed path P.
3 I(P) = 0 for every finite simple closed path P .
4 I(P) = 0 for every finite simple closed path P of length 4.

“The following are equivalent” means 1 () 2 () 3 () 4.

Monderer and Shapley: show 2 =) 3 =) 4, show 1 () 2 and show
4 =) 2.
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Exercise 3 - Verifying a game is potential

Consider prisoner’s dilemma. Verify it is a potential game using the
characterization on the previous slide.

 confess silent

confess (5, 5) (0, 10)
silent (10, 0) (1, 1)

�
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Exercise 4 - convergence of better-response (better-reply) dynamics

A path is an improvement path if

�(k) = (�ik
, ��ik

) with �ik
6= �ik�1 () Jik

(�(k)) < Jik
(�(k � 1))

where ik is the player that changes its strategy at step k.

Proposition
Consider a finite action game. Every improvement path of is finite. If the game is
potential, the improvement path terminates at a Nash equilibrium.

See, for example, [Hespanha, Proposition 13.1].
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An important class of potential games: congestion games
Consider a game with a set N = {1, 2, . . . ,N} of players, and
M = {1, . . . ,M} resources (road segments, communication routes, . . . )
Each strategy corresponds to a subset of resources that the player will use:

for example �(1)
i

= {4}, �(2)
i

= {2, 4, 6}, . . .

Denote the load on resource r as the number of players who use it

`r(�) := |{i 2 N | r 2 �i}|

The cost for each player depends on the load on the resources she is using

Ji(�) =
X

r2�i

fr(`r(�))

1 The function fr is resource-specific and non-decreasing
2 Each player who chooses a given resource experience the same cost

corresponding to the resource as other players choosing the same resource
What are the domain and range of `r and fr?

Examples: transportation or communication networks . . .
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Example: Tra�c routing

A

B

Ferry

Ferry

Road Road

15 + 0.1`Nroad

40

40

15 + 0.1`Sroad

There are two ways to reach city B from
city A, and both include some driving,
and a trip on the ferry.

The two paths are perfectly equivalent,
the only di�erence is whether you first
drive, or take the ferry.

The time needed for the trip depends on what other travellers do.
The ferry time is constant, 40 minutes
The road time depends on the number of cars on the road.
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Tra�c routing as a congestion game

A

B

Ferry

Ferry

Road Road

15 + 0.1`Nroad

40

40

15 + 0.1`Sroad

Formulation as a congestion game.

Each traveller is a Player.

Each path is a resource.

fr(`r) described the time spent on r

Each Player can decide to take the North or the South path.

�i =

(
{N road,N ferry} North
{S road,S ferry} South

All players have identical cost function

Ji(�i , ��i) =

(
40 + 15 + 0.1`N road if �i = N
40 + 15 + 0.1`S road if �i = S
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Every congestion game is an exact potential game

Theorem
The following is an exact potential function for congestion games.

P(�) =
MX

r=1

`r (�)X

k=1
fr(k).

Proof
Consider a player i, and two joint pure strategies � = (�i , ��i) and �0 = (�0

i , ��i).
It su�ces to show that

P(�0)� P(�) = Ji(�
0)� Ji(�).

Note that
`p(�0) = `p(�)� 1 for every resource p 2 �i\�0

i

`q(�0) = `q(�) + 1 for every resource q 2 �0
i \�i

`r(�0) = `r(�) for every other resource r.
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Proof (cont.)

P(�0)� P(�) =
MX

r=1

`r (�
0)X

k=1
fr(k)�

MX

r=1

`r (�)X

k=1
fr(k)

=
X

q2�0
i
\�i

fq(`q(�
0))�

X

p2�i\�0
i

fp(`q(�))

which corresponds exactly to the di�erence between Ji(�
0) and Ji(�), namely,

Ji(�
0)� Ji(�) =

X

l2�0
i

fl(`l(�
0))�

X

l2�i

fl(`l(�))

=
X

q2�0
i
\�i

fq(`q(�
0))�

X

p2�i\�0
i

fp(`q(�))

Consequently, congestion games admit a pure Nash equilibrium.
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Understanding the potential function of the congestion games
MK: ask students to derive the social welfare function. then they see they are not
aligned. for the left-hand be: 2c(1) + 3c(3); for the right-hand-side will be 6c(2)s

Figure: From [Karlin and Peres, Game Theory, Alive]
24 / 34
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Tra�c routing: properties of the pure strategy Nash equilibrium

A

B

Ferry

Ferry

Road Road

15 + 0.1`Nroad

40

40

15 + 0.1`Sroad

What are the pure Nash equilibria?

We consider a population of N = 200 travelers.
Suppose the first 100 players choose the North path and the second 100
players choose the South path.
Travel cost of each player:

Ji(�i , ��i) = 40 + 15 + 0.1 · 200
2 = 65 minutes

Can any player improve the outcome by unilaterally deviating from the NE?
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Braess paradox through an example

A

B

Ferry

Ferry

Road Road

40

40

Bridge
0

15 + 0.1`Nroad

15 + 0.1`Sroad

Assume a bridge is build, to help reduce
tra�c.

It takes no time to cross the bridge,
allowing to go from city A to city B
without taking the ferry.

all travelers avoid the ferry.

Ji(�
⇤) = 2 (15 + 0.1 · 200) = 70 minutes

Can you improve your outcome by unilaterally deviate from the above?
No, road + ferry now takes 40 + 15 + 0.1 · 200 = 75 minutes!
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Braess paradox - where is the paradox?

A

B

Ferry

Ferry

Road Road

15 + 0.1`Nroad

40

40

15 + 0.1`Sroad

J
NE
i = 65 minutes

A

B

Ferry

Ferry

Road Road

40

40

Bridge
0

15 + 0.1`Nroad

15 + 0.1`Sroad

J
NE
i = 70 minutes

With the new link in the transportation graph
the original choice (road + ferry) is still present
the new link is intensively used
all agents experience higher cost!
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W��� �� T��� C����� ��� S����� ��� N����� N������?
�� D������� ����

“On Earth Day this year, New York City’s Transportation Commissioner decided to

close 42d Street, which as every New Yorker knows is always congested. [...] But

to everyone’s surprise, Earth Day generated no historic tra�c jam. Tra�c flow

actually improved when 42d Street was closed.”

And many other real-life cases in road tra�c, data networks, etc.
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https://nymag.com/intelligencer/2017/12/waze-and-google-maps-create-traffic-in-cities.html

https://www.usnews.com/news/national-news/articles/2018-05-07/why-some-cities-have-had-enough-of-waze

https://www.livemint.com/Opinion/dcZr24gKTno4l0a6xh0RIN/Of-Map-Apps-and-Traffic-Jams.html

https://www.theatlantic.com/technology/archive/2018/03/mapping-apps-and-the-price-of-anarchy/555551/
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Distributed welfare games

The above observations motivate considering how to optimize total travel time...

Welfare function
In a N-person game, let �i 2 �i be the strategy played by agent i.

Let � 2 � := �1 ⇥ �2 ⇥ . . .⇥ �N be the system-wide strategy.

A welfare cost W : � ! R is a measure of e�ciency of each strategy for the
social cost of the population of agents.

If the individual cost that player i wants to minimize is Ji(�), the welfare function
can be for example,

W(�) =
X

i

Ji(�) W(�) = max
i

Ji(�) W(�) =
X

i

log Ji(�)
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Price of Anarchy

The Price of Anarchy is defined as the ratio

PoA :=
max�2�NE W(�)

min�2� W(�)

where � is the set of all possible strategies for all agents,
while �NE is the set of all strategies which are NE.

In Braess paradox example, assume W(�) =
P

N

i=1 Ji(�).

PoA =
70

64.xxxx
= 108%

Exercise: How would you formulate the problem of optimizing the social welfare
function?
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Historical notes

Robert W. Rosenthal: defined congestion games
in 1973 as a class of games that have a pure
strategy equilibrium.
Monderer and Shapley: defined potential games
and showed congestion games are equivalent
up to an isomorphism to potential games (1996).
See their paper for the definition of game
isomorphism.
Shapley won the Nobel prize in economics for
his contributions to game theory

I potential games, matching algorithms, Markov
games, cooperative games

Shapley and Nash were students of the same
doctoral thesis (A. W. Tucker)

Lloyd Shapley

Bounding the price of anarchy and mechanism design are active topics in
engineering and computer science, see for example here and here, respectively.
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Summary

Best-response dynamics and its convergence properties
Potential games: ordinal and exact potential functions
Maximizers of potential function and pure Nash equilibrium
Tools to determine if a game is potential
Paths, Improvement paths in playing the game
Convergence of better-reply dynamics in finite action games
Congestion games as an important class of potential games
Social welfare optimization
Braess Paradox
Price of Anarchy
Game design for reducing price of anarchy
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